Created by Ameyah Official
Overview of a two term lecture course in Algebra covering: Convolution Algebra and Algebraic Measurement Theory
P set, p \in P, \vec : P^2 \to \Z^2
V1: \vec(\id(p)) = zero vector 0 \for all p \in P
V2: \vec((p,t)\ast\vec(t,q)) = \vec(p,t)+\vec(t,q)
for all p,t,q \in P
\G_p =
F1 \forall (a,b) \in E(2): \Delta(a\ast b) = \Delta a \star \Delta b
F2 \forall p \in V : \Delta(\id p) = \epsilon
\G = (G,\ast,\id) ANW with G = (V,E,\rho) graph\M = (M,\star,\epsilon)
\Delta: E \to M bzgl (\G,\M)
\MM = (\G,\M,\Delta)
\G = Aktionsnetzwerk (Was messen)
\M = Monoid (Worin)
\Delta = functorial map (Wie)
\M = (M,\star, \epsilon)
M = Menge
op: \star:M^2 \to M
\epsilon - ein Element \in M mit axioms
\forall a,b,c \in M
M1: (a \star b) \star c = a \star (b \star c)
M2: \epsilon \star a = a \star \epsilon
additive commutative monoid
multiplicative commutative monoid
\G = (G,\ast,\id)
G = netzwerk = (V,E,\rho) aka directed graph
\ast weglassprod.
\id=identity
\N_add = (\N,+,0)
\Z_add = (\Z,+,0)
\Z_multi = (\Z,\cdot,1)
etc
forall a,b \in M: a \star b = b\star a
G = (E,V,\rho)
V = vertices (e,f)
E= edges e,f\inE
\rho= map - E \to V^2
\rho forms two edges to one edge
Path(G) = G<+>:= (V,E<+>,\rho<+>)
- \rho<+>(e_1,...,e_n) = (\sigma e_1,...,\sigma e_n)
forall (e_1,...,e_n) \in E<+>
\rho is injective:
x,y \in E: \rho(x) = \rho(y) => x=y